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Abstract

We study the problems of suppressing or inducing chaotic dynamics in a simple model of robot
arms and mechanical manipulators, assuming that the unperturbed systems possess multiple non-transverse
homoclinic and/or heteroclinic orbits depending on the model parameters. Based on the Melnikov
method and numerical computations for Melnikov integrals, fixed points, and turning points, we obtain
conditions for chaos suppression and generation. We prove that the initial phase difference C plays an
important role in suppressing or inducing chaos in complex systems. Our results indicate that these
methods of controlling or inducing chaos can be easily applied to many systems in natural science and
engineering.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Open-loop or non-feedback control techniques for suppressing or preserving chaos have been
extensively investigated in recent years [1–8]. In particular, one technique is based on the
calculation of the Melnikov function and choosing the control term to destroy or to preserve an
inequality that guarantees the existence of a simple zero of the Melnikov function. For systems
with two input forces, based on the Melnikov method and numerical simulations, numerous
examples have shown that chaotic system dynamics are sensitive to the initial phase difference
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between two forces. Therefore, if one can choose a proper initial phase difference in the parameter
space, chaos can be completely eliminated or purposefully created.

However, a number of studies on various dynamical systems by using the aforemen-
tioned technique only considered the case where there exists a pair of (or a single) homo-
clinic (heteroclinic) orbits in a general nonautonomous system, and these homoclinic
(heteroclinic) orbits’ analytical expressions can be easily obtained, so that the calculation of
Melnikov functions (integrals) is easy or at least is possible by using the standard integral
tables [9] or complicated residue computations. If a dynamical system possesses multiple
saddle points with non-transverse homoclinic and/or heteroclinic orbits, but their analytical
expressions of homoclinic and/or heteroclinic orbits of the unperturbed system are impossible to
obtain, how to apply this kind of non-feedback control technique to control (suppress or create)
chaos?

In this paper, we take the following system as an example to answer the above question

’x ¼ y;

’y ¼ �sin x � ax þ b� dy þ g cosðotÞ þ Fg cosðot þCÞ; ð1Þ

where all coefficients and parameters are constants. We introduce a small parameter e51 and
assume that d; g ¼ OðeÞ; but a; b; o ¼ Oð1Þ; F is an adjustable parameter, and C is an initial phase
difference between the two periodic perturbations g cosðotÞ and Fg cosðot þCÞ:

When F ¼ 0; the system presents a simple model for robot arms and some mechanical
manipulators. There have been a number of experimental [10], theoretical [11,12], and numerical
[13] studies of some special case of Eq. (1). Chaotic motions in robot arms have been observed by
many researchers in laboratory experiments. In such situations, the arms show irregular and
usually violent vibrations. If these vibrations are harmful (often, this is the case), they need to be
suppressed. But if they are useful (e.g., used as a mixer of different liquids, chemicals, or powders),
they need to be created or enhanced.

When d ¼ 0; g ¼ 0; Eq. (1) becomes a planar Hamiltonian system, which possesses multiple
non-transverse homoclinic and/or heteroclinic orbits. Very complicated dynamics are expected to
occur. For a similar case to Eq. (1), Li and Moon [14] studied the chaotic dynamics of two well-
potential systems with multiple homoclinic and heteroclinic orbits.

The purpose of this paper is mainly to present some feasible computational control-
lability (suppressing or inducing) conditions of chaos for the complex system (1), assuming that
the unperturbed system possesses multiple non-transverse homoclinic and/or heteroclinic
orbits.

The paper is organized as follows. In Section 2, we present some numerical results concerning
two cases of non-transverse homoclinic and heteroclinic motions including fixed points and
turning points in the unperturbed system. In Section 3, the Melnikov analysis is performed
for Eq. (1), and criteria for the existence and non-existence of chaos are derived. In addition,
n this section, to study the effect of adding the second periodic perturbation, we discuss
occurrence of chaotic motions for F ¼ 0: Section 4 develops an algorithms for Melnikov integrals
for two cases. Compared with a classical example, two results performed by
analytical computation and numerical computation are given in Section 5. Suppression
(or inducing) conditions for chaos are deduced from Melnikov method, and analytical prediction
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of chaos is proved with numerical simulations in Section 6. Finally, conclusions are given in
Section 7.

2. Numerical results concerning two cases in the unperturbed systems

When g ¼ 0 and d ¼ 0; Eq. (1) becomes

’x ¼ y;

’y ¼ �sin x � ax þ b: ð2Þ

Eq. (2) is an unperturbed system with a Hamiltonian function

Hðx; yÞ ¼ 1
2

y2 � cos x þ 1
2
ax2 � bx: ð3Þ

Eq. (3) has degenerate homoclinic and heteroclinic orbits in some regions of the parameter space
ða;bÞ: Figs. 1 and 2 show homoclinic and heteroclinic orbits for two pairs of a and b; respectively.
It is shown that there exist a pair of homoclinic orbits fq7i ðtÞjtARg corresponding to the
parameters ða ¼ 0:5; b ¼ 1:6Þ in Fig. 1, in which the ‘‘þ’’ stands for the right homoclinic orbit, and
the ‘‘�’’ denotes the left one. There exist a pair of homoclinic orbits fq�i ðtÞjtARg; fqþ

j ðtÞjtARg;
a pair of heteroclinic orbits fqijðtÞjtARg; with fqjiðtÞjtARg corresponding to the parameters
ða ¼ 0:15;b ¼ 0Þ in Fig. 2, in which the ‘‘ij’’ means that the direction of the heteroclinic orbit is
from xi to xj; and ‘‘ji’’ is from xj to xi: Thus, the phase space of Eq. (3) has a great variety of
dynamics depending on the parameters a and b:
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Fig. 1. Homoclinic orbits of equation (2): a ¼ 0:5; b ¼ 1:6:
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The fixed points and turning points of the unperturbed system (2) satisfy the following two
equations, respectively

� sinðxÞ � ax þ b ¼ 0;

2H þ 2 cosðxÞ � ax2 þ 2bx ¼ 0; ð4Þ

where H denotes the Hamiltonian function at the fixed points.
The fixed points and the turning points of unperturbed system (2) are obtained by numerically

solving Eq. (4) using for instance the bisection method. After the numerical computation,
corresponding to the two cases in Figs. 1 and 2, respectively, the parameter values (PV), the saddle
point(s) (SP), the turning points (TP), and the Hamiltonian function (HF) are obtained as shown
in Table 1.

From Figs. 1 and 2, it can be seen that each saddle has homoclinic and/or heteroclinic orbits,
which are contained in the level set determined by Eq. (3). Unfortunately, we do not have
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Fig. 2. Heteroclinic orbits of equation (2): a ¼ 0:15; b ¼ 0:

Table 1

The saddle points and turning points of the unperturbed system (2)

PV Left TP x�
i First SP xi Second SP xj Right TP xþ

i or xþ
j HF

ða ¼ 0:5; b ¼ 1:6Þ 0.4379 3.0831 6.0017 �3.1166

ða ¼ 0:15; b ¼ 0Þ �6.1867 �3.7366 3.7366 6.1867 3.7506

H. Cao et al. / Journal of Sound and Vibration 271 (2004) 705–724708



analytical expressions for these homoclinic and heteroclinic orbits; therefore, numerical approach
is necessary.

3. Chaotic motion by an additional periodic perturbation

3.1. The existence of chaos for case F ¼ 0: numerical results

Before we go on to study the effect by adding the second periodic perturbation, we briefly
discuss the occurrence of chaotic motions for F ¼ 0: More detailed results can be found in
Ref. [12]. We fix (i) a ¼ 0:5; b ¼ 1:6; d ¼ 0:12; o ¼ 0:75; and the existence of chaotic motions
beyond the Melnikov analytical threshold value gc is 0:3 for this case; (ii) a ¼ 0:15; b ¼ 0; d ¼
0:12; o ¼ 0:75; and the existence of chaotic motions beyond the Melnikov analytical threshold
value gc is 0:7 for this case.

For clarity, the chaotic orbit in the phase space, the ðx; yÞ-plane, and the strange attractor in the
Poincar!e map for two cases, are given in Figs. 3–6.

We next study the effect of the second periodic perturbation on chaotic motions observed for
Cases 1 and 2.

3.2. The existence of chaos for case Fa0: Melnikov analysis

Here, we apply Melnikov method to Eq. (2) and obtain criteria for suppression of chaos.
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Fig. 3. Phase portrait for Case 1: g ¼ 0:3:
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Fig. 4. Poincar!e map of the chaotic attractor for g ¼ 0:3 in Case 1.
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Fig. 5. Phase portrait for Case 2: g ¼ 0:7:
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When ga0 and da0 are small enough, Eq. (1) may have ‘‘transverse’’ homoclinic and
heteroclinic orbits. By the Smale–Birkhoff homoclinic theorem [15–17], the existence of such
orbits may result in chaotic dynamics. Melnikov’s method is an analytical technique for detecting
the occurrence of this type of chaotic dynamics and has been successfully applied to several
systems containing multiple saddle fixed points.

We first consider the case shown in Fig. 1. The distance between the stable manifold and
unstable manifold can be measured by the Melnikov functions M7

i ðt0Þ; and in the following we
denote the homoclinic orbits of the unperturbed system as fq7

i ðtÞjtARg ¼ ðx7
i ðtÞ; y7

i ðtÞÞ: We can
chose proper initial conditions for these homoclinic orbits such that y7i ðtÞ is an odd function of t:

The Melnikov function can be calculated as follows:

M7
i ðt0Þ ¼

Z
N

�N

y7
i ðtÞ½�dy7i ðtÞ þ g cos oðt þ t0Þ þ Fg cos ðoðt þ t0Þ þCÞ
 dt

¼ � d
Z

N

�N

½y7i ðtÞ
2 dt � gð1 þ F cosðCÞÞ
Z

N

�N

y7
i ðtÞ sinðotÞ dt

� �
sinðot0Þ

� Fg sinðCÞ
Z

N

�N

y7
i ðtÞ sinðotÞ dt

� �
cosðot0Þ

¼ � dB7
i � ½gð1 þ F cosðCÞÞA7

i 
 sinðot0Þ � ½Fg sinðCÞA7
i 
 cosðot0Þ

¼ � dB7
i � gA7

i ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 2 cosðCÞF þ 1

p
Þ sinðot0 þY7

i Þ; ð5Þ
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Fig. 6. Poincar!e map of the chaotic attractor for g ¼ 0:7 in Case 2.

H. Cao et al. / Journal of Sound and Vibration 271 (2004) 705–724 711



where

A7
i ¼

Z
N

�N

y7
i ðtÞ sinðotÞ dt;

B7
i ¼

Z
N

�N

½y7i ðtÞ
2 dt;

Y7
i ¼ arctan

1 þ F cosðCÞ
F sinðCÞ

� �
;

and the positive (negative) sign refers to the left (right) homoclinic orbit.
It follows from the Melnikov theory that the condition for M7ðt0Þ to change sign is

djB7
i jpgjA7

i j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 2 cosðCÞF þ 1

p
; ð6Þ

that is,

F2 þ 2 cosðCÞF þ 1 �
djB7

i j
gjA7

i j

� �2

X0; ð7Þ

where the equal sign corresponds to the case of tangency between the stable and unstable
manifolds.

Conversely, if we let

F2 þ 2 cosðCÞF þ 1 �
djB7

i j
gjA7

i j

� �2

o0; ð8Þ

then this inequality provides a necessary condition for M7
i ðt0Þ not to change sign. This condition

is also sufficient to assure that M7
i ðt0Þ will not change sign under the main resonant condition. So,

we can deduce a wide range for the initial phase difference C from condition (8).
We next consider Case 2 shown in Fig. 2, in which there exist two heteroclinic orbits, qijðtÞ ¼

ðxijðtÞ; yijðtÞÞ; qjiðtÞ ¼ ðxjiðtÞ; yjiðtÞÞ; two homoclinic orbits, q�i ðtÞ ¼ ðx�
i ðtÞ; y

�
i ðtÞÞ and qþ

j ðtÞ ¼
ðxþ

j ðtÞ; y
þ
j ðtÞÞ; associated with the hyperbolic fixed points pi and pj:

The Melnikov function Mijðt0Þ for qijðtÞ is given by

Mijðt0Þ ¼
Z

N

�N

yijðtÞ½�dyijðtÞ þ g cos oðt þ t0Þ þ Fg cosðoðt þ t0Þ þCÞ
 dt

¼ � dBij þ ½gð1 þ F cosðCÞCij � Fg sinðCÞSij
 cosðot0Þ

� ½gð1 þ F cosðCÞÞSij þ Fg sinðCÞCij
 sinðot0Þ

¼ � dBij þ gAij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 2 cosðCÞF þ 1

p
cosðot0 þYijÞ; ð9Þ

where

Cij ¼
Z

N

�N

yijðtÞ cosðotÞ dt;

Sij ¼
Z

N

�N

yijðtÞ sinðotÞ dt; ð10Þ
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and

Aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

ij þ S2
ij

q
;

Bij ¼
Z

N

�N

½yijðtÞ
2 dt;

Yij ¼ arctan
ð1 þ F cosðCÞÞSij þ F sinðCÞCij

ð1 þ F cosðCÞCij � F sinðCÞSij

� �
: ð11Þ

Similarly, the Melnikov function Mjiðt0Þ for qjiðtÞ becomes

Mjiðt0Þ ¼ �dBij � gAij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 2 cosðCÞF þ 1

p
cosðot0 þYijÞ; ð12Þ

where we have used the following symmetry equations

xijðtÞ ¼ xjið�tÞ; yijðtÞ ¼ �yjið�tÞ: ð13Þ

For the left homoclinic orbit q�
i ðtÞ ¼ ðx�

i ðtÞ; y
�
i ðtÞÞ and the right homoclinic one qþ

j ðtÞ ¼ ðxþ
j ðtÞ;

yþj ðtÞÞ; the corresponding Melnikov functions are the following

M�
i ðt0Þ ¼ �dB�

i � gA�
i ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 2 cosðCÞF þ 1

p
Þ sinðot0 þY�

i Þ ð14Þ

and

Mþ
j ðt0Þ ¼ �dBþ

j � gAþ
j ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 2 cosðCÞF þ 1

p
Þ sinðot0 þYþ

j Þ; ð15Þ

where the corresponding coefficients are similar to those in the first case.
It follows from the Melnikov theory that the condition for Mijðt0Þ to change sign is

djBij jpgjAij j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 2 cosðCÞF þ 1

p
; ð16Þ

that is,

F2 þ 2 cosðCÞF þ 1 �
djBij j
gjAij j

� �2

X0: ð17Þ

Then, the Melnikov functions Mijðt0Þ and Mjiðt0Þ have simple zeros, and the stable manifolds and
unstable manifolds intersect transversely. Here, the equal sign corresponds to the case of tangency
between the stable and unstable manifolds.

Conversely, if we let

F2 þ 2 cosðCÞF þ 1 �
djBij j
gjAij j

� �2

o0; ð18Þ

then this condition provides a necessary condition for Mijðt0Þ and Mjiðt0Þ not to change sign.
These condition are also sufficient to assure that Mijðt0Þ and Mjiðt0Þ will not change sign under the
main resonant conditions. So, we can deduce a wide range for the initial phase difference C from
condition (18).

For the left (right) homoclinic orbits, we have similar results.
Hence, according to the Smale–Birkhoff homoclinic theorem, chaotic dynamics may occur in

the system described by Eq. (1), not only the stable manifolds and unstable manifolds of
homoclinic orbits intersect transversely but also the stable manifolds and unstable manifolds of
heteroclinic orbits intersect transversely, which lead to very complicated dynamics.
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4. Numerical computation of Melnikov integrals

From Section 3, we see that it is very important to compute the Melnikov integrals so as to
verify the derived criteria. However, analytical expressions for the unperturbed homoclinic and
heteroclinic orbits cannot be obtained. So numerical computations of the integrals are necessary.
Here, we adopt the method performed by Bruhn and Koch [11] and Yagasaki [13]. Our main
algorithm is based on the fact that the time variable t can be written as functions of the state
variable x on homoclinic and heteroclinic orbits. In doing so, the computation of Melnikov
integrals can be transformed from that for the time variable t into that for the state variable x:

We first consider the case of homoclinic orbits fq7
i ðtÞg: From Eqs. (2) and (3), we have

dx

dt
¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hi þ 2 cos x � ax2 þ 2bx

p
; ð19Þ

on the homoclinic orbits fq7
i ðtÞg for t > 0: Let %x

7
i be solutions of the transcendent equation

�2 cos x þ ax2 � 2bx ¼ 2Hi; ð20Þ

such that %x�
i o %xþ

i : The points ð %x7
i ; 0Þ are turning points of the homoclinic orbits. Integrating

Eq. (19) yields

t ¼ 8

Z x

%x7
i

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hi þ 2 cos x� ax2 þ 2bx

q : ð21Þ

Substituting Eq. (21) into Eq. (5), we obtain

A7
i ¼ 82

Z xi

%x7
i

sin o
Z x

%x7
i

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hi þ 2 cos x� ax2 þ 2bx

q
0
B@

1
CA dx;

B7
i ¼ 82

Z xi

%x7
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hi þ 2 cos x� ax2 þ 2bx

q
dx: ð22Þ

Hence, we can numerically estimate condition (8) as follows. At first the fixed point xi and the
turning points %x

7
i are obtained by numerically solving Eqs. (2) and (3) using the bisection method.

We then numerically estimate the definite integrals A7
i and B7

i given by Eq. (5) using Simpson’s
rule. The integration of A7

i is performed by changing the upper and lower limits of integration
from xi to xi7Dx and %x

7
i 8Dx; where Dx is a small positive constant, since the integrands are

singular near these points.
We next consider the case shown in Fig. 2. We can assume that xioxj without loss of generality.

By noting that Eq. (21) also holds on heteroclinic orbits, the second equation of Eq. (11) can be
written as

Bij ¼
Z xj

xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hi þ 2 cos x � ax2 þ 2bx

p
dx: ð23Þ
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As in the homoclinic case, we have

t ¼
Z x

xijð0Þ

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hi þ 2 cos x� ax2 þ 2bx

q ð24Þ

on the heteroclinic orbit qijðtÞ: Substituting Eq. (24) into Eq. (10) yields

Cij ¼
Z xj

xi

cos o
Z x

xijð0Þ

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hi þ 2 cos x� ax2 þ 2bx

q
0
B@

1
CA dx;

Sij ¼
Z xj

xi

sin o
Z x

xijð0Þ

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hi þ 2 cos x� ax2 þ 2bx

q
0
B@

1
CA dx: ð25Þ

The fixed points xi and xj are obtained by numerically solving Eqs. (2) and (3), and the
definite integrals Bij; Cij and Sij in Eq. (25) are then numerically estimated. The limits of
integration are, if necessary, changed from xi and xj to xi þ Dx and xj � Dx (with small Dx > 0),
respectively.

5. Compared with the analytical algorithm

In this section, to verify whether there exists a relatively good agreement between the numerical
algorithm and the analytical one, we use the following system as an example

’x ¼ y;

’y ¼ �sin x þ e½ða� by2Þy þ g cosðotÞ
; ð26Þ

where e is small perturbation parameter.
When e ¼ 0; Eq. (26) is an Hamiltonian system with heteroclinic orbits given by analytical

expressions as follows

xijðtÞ ¼ 72 arctanðetÞ; yijðtÞ ¼ 72 sechðtÞ: ð27Þ

In addition, there exist one center, ð0; 0Þ; and two saddle points, ð�p; 0Þ; ðp; 0Þ:
For Eq. (26), Litak et al. [18] gave some detailed analysis for its chaotic motion by means of

combing Melnikov analysis and numerical methods.
The Melnikov function for this system is given by

Mijðt0Þ ¼
Z

N

�N

ða� by2
ijðtÞÞy

2
ijðtÞ dt þ g

Z
N

�N

yijðtÞ cos½oðt þ t0Þ
 dt; ð28Þ

where the positive (negative) sign refers to the top (bottom) heteroclinic orbit.
Substituting Eq. (27) into Eq. (28), the Melnikov function works out to be

Mijðt0Þ ¼ �Bij7Aij cosðot0Þ; ð29Þ
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with

Bij ¼ 8a� 64
3
b;

Aij ¼ 2pg sech
po
2

� �
: ð30Þ

Thus, the critical amplitude of the external forcing, for which the heteroclinic bifurcation occurs,
is as follows

gc ¼
4

p
a�

8

3
b

����
���� cosh

o
2

� �
: ð31Þ

Then, we can directly use the analytical expression (31) to plot the homoclinic bifurcation curve.
In the following, we present the numerical results by using the algorithm developed in Section 4.
First, from the Hamiltonian function H ¼ y2=2 � cosðxÞ and the first equation of Eq. (26), we

obtain the time variable t as follows:

t ¼ 8

Z x

p

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H þ 2 cosðxÞ

p :

Second, using the equality y dt ¼ dx; Eq. (28) can be written as

Mijðt0Þ ¼ Bij þ gAij cosðot0 þYijÞ; ð32Þ
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Fig. 7. Heteroclinic bifurcation curves computed by two algorithms: the solid line was computed by the developed

numerical algorithm; while the dotted line was computed by the analytical expression (31).
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where

Bij ¼ a
Z p

�p
y dx � b

Z p

�p
y3 dx;

Cij ¼
Z p

�p
cos o

Z x

�p

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H þ 2 cos x

p
 !

dx;

Sij ¼
Z p

�p
sin o

Z x

�p

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H þ 2 cos x

p
 !

dx;

Aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

ij þ S2
ij

q
: ð33Þ

Finally, using Simpson’s rule, Bij and Aij can be obtained with 800 steps for integration about x
and with 400 steps for integration about x in the range of the forced frequency oA½0; 1
:

Using the developed numerical algorithm and analytical expression (31), respectively, we plot
two heteroclinic bifurcation curves in Fig. 7, in which the solid line is the heteroclinic bifurcation
curve computed by numerical algorithm, while the dotted line denotes the heteroclinic bifurcation
curve performed by the analytical expression (31). It can be seen that the two results are in good
agreement.

6. Suppressing or inducing chaos by Melnikov method: numerical results

We first present numerical results for the first case.
Substituting A7

i and B7
i into the right-hand side of inequality (8), and setting the inequality be

zero, we have

F2 þ 2 cos CF þ 1 �
dB7

i

gA7
i

� �2

¼ 0: ð34Þ

For Eq. (34), we have the following homoclinic condition for chaos suppression:

Theorem 1. If jsinCjpdB7
i =gA7

i and FminpFpFmax; then M7
i ðt0Þ always has the same sign and

consequently no chaotic motions occur in the parameter regions enclosed by the following two curves:

Fmin ¼ �cosðCÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dB7

i

gA7
i

� �2

�ðsinðCÞÞ2

s
: ð35Þ

Fmax ¼ �cosðCÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dB7

i

gA7
i

� �2

�ðsinðCÞÞ2

s
: ð36Þ

We set the parameter values as a ¼ 0:5; b ¼ 1:6; d ¼ 0:12; o ¼ 0:75; g ¼ 0:3; and the F and C
are free parameters. First, using the algorithm developed in Section 3, we obtained the value of
Melnikov integrals as shown in Table 2, where numerical computations described in Section 3
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were performed by setting Dx ¼ 1 � 10�5 and using Simpson’s rule with 800 steps for integration
about x and 400 steps for integration about x in Eq. (22).

From the homoclinic suppressing condition and the above Melnikov integral values, we obtain
the range of initial phase difference C to be ½�0:476869; 0:476869
 for the right homoclinic orbit,
and ½�0:416891; 0:416891
 for the left homoclinic orbit. From Eqs. (35) and (36), we note that
M7

i ðt0Þ change signs, that is, the transverse intersections of homoclinic orbits occur above and
below the curves given by Eqs. (36) and (35), respectively. In the parametric regions enclosed by
the two curves, M7

i ðt0Þ does not change sign and hence transverse intersection of homoclinic
orbits do not occur. In addition, the parametric regions enclosed by the curves obtained from
M�

i ðt0Þ is a subregion of the parametric regions enclosed by the curves obtained from Mþ
i ðt0Þ:

As an example, we fixed the value of C at 0:3: For this choice, from Eqs. (35) and (36), one can
expect suppression of chaos for FA½�1:3066; �0:6041
 corresponding to the right homoclinic
orbit, while, for the left homoclinic orbit, the chaos suppressing interval could be in
FA½�1:2321;�0:6785
: Out of the ranges of the two intervals, chaos may occur.

ARTICLE IN PRESS

Table 2

Values of A7
i and B7

i for Case 1

Aþ
i Bþ

i A�
i B�

i

1:6736 1:9205 1:5131 1:5317
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Fig. 8. Chaos does not occur in the region, in which the parameter values are a ¼ 0:5; b ¼ 1:6; d ¼ 0:12; o ¼ 0:75;
g ¼ 0:3:
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Fig. 8 shows the two regions, in which the region enclosed by the dashed curve is from
the left homoclinic orbit, and the region enclosed by the solid curve is from the right homoclinic
orbit.

Fig. 9 shows the maximal Lyapunov exponent l1 calculated by Wolf ’s algorithm [19] versus the
second perturbation amplitude F ; in which all parameters are fixed except that F varys with
increment DF ¼ 0:001: When we take the initial phase difference C ¼ 0:3; the corresponding
maximal Lyapunov exponents are negative for FA½�1:4; 0:46
: It demonstrates that chaotic
motion has been suppressed by means of an initial phase difference C in the second weak resonant
perturbation term.

Corresponding to the same parameters as that in Fig. 9, we present bifurcation diagrams in
Fig. 10. From Fig. 10, it can be seen that the chaotic motion is suppressed if FA½�1:4; 0:46
 and
periodic response is obtained in the same interval. If we want to create chaotic motion, we may
take the F out of the above interval. For example, when F is in the interval ½�0:47; 0
; there exist
chaotic motions as shown in Fig. 9 corresponding to the positive maximal Lyapunov exponents
indicated in Fig. 10.

Similarly, we have the following heteroclinic suppression condition. For the left and right
homoclinic orbits, there exist similar results.

Theorem 2. If jsinCjpdBij=gAij and FminpFpFmax; then Mijðt0Þ and Mjiðt0Þ always have the same
sign and, consequently, no chaotic motions occur in the parameter regions enclosed by the following
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two curves, where

Fmin ¼ �cosðCÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dBij

gAij

� �2

�ðsinðCÞÞ2

s
: ð37Þ

Fmax ¼ �cosðCÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dBij

gAij

� �2

�ðsinðCÞÞ2
s

: ð38Þ

To verify the theoretical results, we set the parameter values as a ¼ 0:15; b ¼ 0; d ¼ 0:12;
o ¼ 0:75; g ¼ 0:7; and F and C are free parameters. First, using the algorithm developed in
Section 3, we obtained the Melnikov integrals in Table 3, where numerical computations
described in Section 3 were performed by setting Dx ¼ 1 � 10�5 and using Simpson’s rule with 800
steps for integration about x and with 400 steps for integration about x in Eq. (25).

ARTICLE IN PRESS

Fig. 10. Bifurcation diagrams for parameter values F ðC ¼ 0:3Þ: The other parameter values are the same as in Fig. 9.

Table 3

Values of A7
i ; B7

i ; Aij ; Bij for Case 2

A�
i B�

i Aij Bij Aþ
i Bþ

i

1:4456 1:3583 4:2160 11:0413 1:4456 1:3583
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From the suppressing condition and the above Melnikov integral values, we obtain the
significant range of initial phase difference C to be ½�0:161779; 0:161779
 for the left and right
homoclinic orbits, and ½�0:465595; 0:465595
 for the heteroclinic orbits. Obviously, the range of
homoclinic orbits is less than the range of heteroclinic orbits. From Eqs. (37) and (38), we note
that Mijðt0Þ and Mjiðt0Þ change signs, that is, the transverse intersections of homoclinic orbits or
heteroclinic orbits occur above and below the curves given by Eqs. (38) and (37), respectively. In
the parametric regions enclosed by the two curves, M7

i ðt0Þ and Mijðt0Þ do not change sign and
hence transverse intersections of homoclinic orbits and heteroclinic orbits do not occur. In
addition, the parametric regions enclosed by the curves obtained from M�

i ðt0Þ and Mþ
j ðt0Þ is a

small subregion of the parametric regions enclosed by the curves obtained from Mijðt0Þ:
As an example, we fixed the value of C at 0:6: For this choice, from Eqs. (37) and (38), one can

expect suppressing chaos for FA½�1:4860; �0:1647
; corresponding to the heteroclinic orbit, while
there are no significant values for the homoclinic orbits. Out of these ranges of the two intervals,
chaos may occur.

We note that the corresponding Melnikov integrals are the same for the left and the right
homoclinic orbits due to the symmetry.

Fig. 11 shows the two regions, in which the region enclosed by the dashed curve is from the
homoclinic orbits, and the region enclosed by the solid curve is from the heteroclinic orbit. Fig. 12
shows the maximal Lyapunov exponent l1 versus the second perturbation amplitude F ; in which
all parameters are fixed except that F varys with increment DF ¼ 0:001: When the initial phase
difference C ¼ 0:6; the corresponding maximal Lyapunov exponents are negative for
FA½�1:4; 0:46
: It demonstrates that chaotic motion has been suppressed by means of an initial
phase difference C in the second weak resonant perturbation term.
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Fig. 11. Chaos does not occur in the region, in which the parameter values are a ¼ 0:15; b ¼ 0; d ¼ 0:12; o ¼ 0:75;
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Fig. 12. Maximal Lyapunov exponents. a ¼ 0:15; b ¼ 0; d ¼ 0:12; o ¼ 0:75; g ¼ 0:7; C ¼ 0:6:

Fig. 13. Bifurcation diagrams for parameter values F ðC ¼ 0:6Þ: The other parameter values are the same as in Fig. 12.

H. Cao et al. / Journal of Sound and Vibration 271 (2004) 705–724722



Corresponding to the same parameters as that in Fig. 12, we present bifurcation diagrams in
Fig. 13. From Fig. 13, it can be seen that the chaotic motion is suppressed if FA½�1:4; 0:46
 and
periodic response is obtained in the same interval. If we want to create chaotic motion, we may
take the F out of the above interval. For example, when F is in the interval ½�1:9;�1:38
; there
exist chaotic motions as shown in Fig. 13 corresponding to the positive maximal Lyapunov
exponents indicated in Fig. 12.

7. Conclusions

In this paper, we have studied a rather complicated non-linear dynamical system, for which the
unperturbed system possesses multiple non-transverse homoclinic and/or heteroclinic orbits
depending on the parameters a and b: For this system, we have presented some conditions for
suppressing or inducing chaos by adding a second periodic perturbation and using the initial
phase difference as a control term. Based on the Melnikov method and numerical computations
for the Melnikov integrals, fixed points, and turning points, we have obtained the controllability
regions in the parameter space for chaos suppression or generation. If we choose a proper C;
chaos can be completely eliminated or be created as desired.

In practical applications, the second perturbation input, Fg cosðot þCÞ in Eq. (2), works as an
open-loop control input. This signal can be connected directly to the machine through an
electronic wire. Physically, an exact signal can be obtained and used by such wiring, without the
need of signal identification. Its precise mathematical form is needed only in theoretical analysis,
as did in the paper, but not for physical implementation.

There are a number of methods that deal with the chaotic control and chaos generation
problems. By comparing the theoretical relevance between the method proposed in this paper and
the existing ones, we found that some basic conditions are not comparable, therefore it is difficult
to give a correct and fair comparison among different methods. For this reason, we leave a
comprehensive comparison study to future studies.

The system considered here shows that there exists different ranges of controlling (suppressing
or inducing) chaos in the parameter space for different unperturbed systems. For example, for
systems with multiple nontransverse homoclinic orbits, their controlling ranges are almost the
same, but for the unperturbed systems with both homoclinic orbits and heteroclinic orbits, their
ranges are quite different. Our numerical results have shown that the range affected by
heteroclinic orbits is clearly greater than that by homoclinic orbits.

In many fields of natural science and engineering, there are a lot of mathematical models similar
to the one we consider here. Therefore, our results of controlling (suppressing or inducing) chaos
should be useful for a broad spectrum of applications.
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